野草2023新地扯一二完整版_嫩绿草点击由此进入在线_成品人视频免费直接观看

热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

W玻色子质量实验与理论矛盾,或是十年来最重要的进展

2022-04-10 16:26     来源:中科院高能所     粒子物理

就在昨天,美国费米实验室的CDF项目在《Science》上发了篇文章,W玻色子质量的测量结果和标准模型预测的结果有明显差距。

消息一出,粒子物理界炸了窝。因为这或许是十年来最重要的粒子物理进展!

这个结果意味着什么?

实验结果

2012年,欧洲核子中心的LHC的两个合作组(ATLAS和CMS)宣布发现了希格斯粒子[1],从此,粒子物理标准模型预言的最后一个粒子被发现。在过去的十年中,探索超出标准模型的物理显然已经成为前沿物理的最重要的一部分。

而此次,则是美国费米国家实验室的CDF合作组(The Collider Detector at Fermilab),对于标准模型中的基本粒子——W玻色子——的质量做了最为精确的测量,结果表明,实验结果与理论预测有明显的差距[2]:

此次的实验结果

图中一共展示了九个测量W玻色子质量的实验,红色的点为测量结果,穿过点的红线代表着误差范围,其中最底下一行红色的就是此次的结果。灰色的竖线是标准模型在理论中预测的质量。

可以看到,此次实验的结果误差非常非常小,远远小于过去的测量结果。最重要的是,此次的测量结果与理论预测的结果有明显的偏离!此次的测量置信度在7个σ,一般达到5个σ就能成为发现了!

实验的结果:

MW=80433.5±9.4MeV/c2

理论的预测:

MW,SM=80375±6MeV/c2

(其中MeV/c2是高能物理常用的单位,为了比较,电子的质量为0.5MeV/c2,而质子的质量为≈937MeV/c2)

可以看到,实验与理论的偏差已经很大了!

W玻色子

本节说说什么是W玻色子以及相关的希格斯粒子、希格斯机制等。

我们比较熟悉电磁相互作用,任何带有电荷的粒子(比如电子、质子)等之间会存在电磁吸引或者排斥力,而且这些粒子的(加速)运动会辐射电磁波,也就是光子。根据现代的电磁理论,也就是量子电动力学,光子是电磁相互作用的媒介粒子,电子、质子等之间的电磁力是通过交换光子实现的。

电子与电子对撞(散射过程)的费曼图,中间交换了一个光子(的情况)

与此相似,在弱互作用中也会出现媒介粒子,但是与电磁相互作用又有不同:

光子只有一种,而弱相互作用的媒介粒子有三种(强相互作用中的媒介粒子,即胶子,一共有8种),W+、W-以及Z三种玻色子;

光子不带电荷,而W+、W-是带电荷的,分别带正电和负电;

光子没有质量,而W+、W- 以及Z都有质量

粒子物理标准模型中的粒子

其中第3点最有意思。最开始,杨振宁和Mills尝试把电磁相互作用中的思想,也就是规范场思想,推广到弱相互作用中,也就是大家熟知的杨米尔斯理论,但是遇到了一个解决不了的问题:

理论中的媒介粒子(也就是规范玻色子),应该是完全没有质量的,比如光子就是这样的,但是弱相互作用的三个媒介粒子具有质量,而且还是很大的质量!这也是弱相互作用的距离非常小的原因。

曾经杨振宁作报告讲了这个理论,而听众中就有泡利,然后泡利批评了杨振宁的这个想法[3]。也正是因为质量问题,最开始的时候大家并没有重视杨米尔斯理论。

一直到了20世纪60年代,首先对称性自发破缺被引入到了粒子物理中,然后希格斯提出了希格斯机制(其实一共有三个组分别独立地提出了这一机制),后来温伯格等人把这一机制应用到电弱相互作用中。

希格斯机制在理论中引入了希格斯场,希格斯场与其它场有相互作用,通过对称性自发破缺这种机制,使得费米子(除了中微子)、W± 以及Z玻色子以及希格斯粒子自己都获得了质量。换句话说,我们可以认为希格斯场赋予了玻色子质量。

超出标准模型的新物理

去年,费米实验室的另一个结果也引起整个物理学界的沸腾,也是因为实验结果与标准模型理论预测有差别(不过还没有得到5个σ)。对于理论中的这种“错误”,为什么大家如此兴奋呢?

因为这意味着超出标准模型的新物理!

自从十年前希格斯粒子被发现后,标准模型的框架可以说已经搭建完成了,而且也取得了非常辉煌的成就。那么下一步该怎么发展呢?

正所谓成也萧何败萧何,标准模型虽然取得了很大的成功,但是还有很多事情解释不了:

中微子质量问题:标准模型中的中微子质量是严格为零的,但是目前的实验已经表明,三代中微子的质量不可能都是为零;

暗物质:天文观测暗示了暗物质的存在,那么暗物质对应的粒子到底是什么呢?

暗能量:导致宇宙加速膨胀的暗能量来自哪里呢?

正反物质不对称:宇宙中只有正物质,而没有反物质(组成宏观物体的大量反物质聚集),但是在宇宙之处,正反物质应该是等量产生的,那是什么原因导致在宇宙演化的过程中,反物质消失了呢?

希格斯粒子:虽然希格斯粒子已经被发现,但是希格斯粒子的细节还不清楚,甚至还不知道希格斯粒子是不是基本粒子都不清楚

……

再往大了说,要想统一四种相互作用,对标准模型的扩充是一定的!但是任何理论上的发展,都需要实验作为指导。原则上来说,理论只需要做到逻辑自洽就可以,不同的理论得到的结果可以千差万别,甚至在有的领域,可以说人手一个理论(模型)。

那么这么多的理论,到底哪一种才是我们的宇宙所遵循的规律的呢?(当然也可能每一种都不是)。这就需要实验!否则理论就像无头苍蝇一样,不知道该如何发展。

比如,大家耳熟能详的几种理论:

超对称理论:每一种标准模型中的粒子都有一个对偶粒子,由于某种对称性自发破缺,导致这些超对称粒子的质量很大,所以还没探测到;

圈量子引力:一种统一量子场论和引力的理论;

弦论、M理论等.……

本次W玻色子的质量与理论预言不一致,不负责任地猜测,原因很有可能是希格斯粒子,我们对希格斯粒子的性质还不够理解。

我自己不是做新物理方向的,具体的理论不太清楚。但是,目前对于新物理理论方向的探索可以说非常多,但是最终还是需要实验结果给定下来。

精确测量

最后还是说一点精确测量的事情。

此次是CDF的结果,但是这个探测器在2011年就已经关闭了[4],现在的结果是CDF的科学家在这十年中从十年前的测量数据中挖掘出的!而为了达到非常高的测量精度,往往需要多年持续地收集数据!

探索新的物理,不仅仅是发现全新的物理现象,实际上,精确测量已知的物理量也是非常重要的一环。去年的μ子反常磁矩的测量结果,以及现在W玻色子质量的测量结果,都是这样的。而纵观物理学发展史,就发现物理学中有不少重大发现都是源于精度的提高!

或者说,源于理论与实验的不同!

海王星的发现。人们在发现天王星之后,开始测量其运动轨道,可是,观测了一个时期以后,却发现天王星是一个“性格很别扭”的行星。因为別的大行星都循着科学家推算出来的轨道绕太阳运行,只有天王星有点不安分,它在绕太阳运行的时候,老是偏离它应走的路线[5]。行星之间的万有引力会影响他们的轨道,经过仔细计算之后,推算,太阳系中还存在另一颗没有被发现的行星,影响了天王星的运动轨迹。1846年9月23日,德国天文学家伽勒用望远镜看到了法国天文学家勒威耶和英国天文学家亚当斯同时独立地用天体力学理论所算出的一个当时尚未发现的新行星,这就是海王星[5]。

海王星

对天体的精确观测能让我们获得更多的信息,比如冥王星在1930年就被发现了,下图分别拍摄于1994年和2015年,意义不言而喻!

1994年和2015年对冥王星的拍摄

水星进动。按照牛顿万有引力定律,行星绕太阳运动轨迹是一个封闭的椭圆,不会发生变化。但是对水星运动轨迹的精确测量发现,它的轨道在逐渐变化,长轴也在缓慢的转动,即进动现象,速率为每百年1°33′20",然而根据牛顿理论计算得到结果为每百年1°32′37",即使考虑了其它行星带来的影响,理论依然与实验不相符。这最早是在1859年被法国天文学家勒维耶发现。直到广义相对论建立起来之后,这一现象才被很好地解释,水星进动问题也是验证广义相对论的主要现象之一。

实际上,当下和未来也有许多量需要进一步的精确测量:

万有引力常数G。对电磁相互作用我们能测得很精确(比如电子磁矩),那么引力自然地也要测得精确一点。其中万有引力常数G是很关键的量,对这一量的精确测量一直在持续,但是由于万有引力本身很弱,因此测量误差一直很大。很多不同实验结果也有明显差距。相对于电磁力的精确结果,可以说,我们对万有引力了解的很粗糙。

2000年之后部分测量的结果

(上图[6])

希格斯粒子。刚才已经提到,虽然我们已经发现了希格斯粒子,但是我们对希格斯粒子的了解几乎只有“存在希格斯粒子,质量为125GeV”,它的很多细节和性质我们并不怎么了解,甚至都不知道它是不是基本粒子。作为标准模型中费米子质量的来源,我们理应对其有更进一步的认知。而这也是新物理的发展方向之一,即建造希格斯粒子工厂,精确测量希格斯性质。当然,这就需要建造新的大型对撞机,中国正在推进的CEPC就是其中之一,我想很多人对此都有了解。

位于欧洲核子中心的大型强子对撞机LHC一角



推荐阅读

粒子物理学,顶夸克迄今最精确质量测得

科学家们认为,尽可能深入地了解顶夸克有助更好地测试粒子物理学标准模型。如果精确地知道W玻色子和希格斯玻色子的质量,则可以根据标准模型预测顶夸克的质量。同样,利用顶夸克和希格斯玻色子的质量,可以预测W玻色子质量。 2022-04-21

引爆物理界的新发现:登顶封面却难以复现,实验设备11年前就拆了

Tevatron加速器周长6千米,曾经是世界上最强的加速器。它的主要功能,就是将正反质子加速,使得正反质子分别在圆环形真空轨道内顺时针和逆时针运动,在对撞点处受磁场控制偏向后对撞。其上还搭载了一个复合粒子探测器(CDF)。 2022-04-13

对W粒子的质量的测量为什么会这么重要?

《科学》杂志将这一期的封面设计成下图的这个样子。图中岩石质感的W字母砸碎了一个圆盘,而这个圆盘代表着粒子物理学的“标准模型”。 2022-04-11

“W粒子质量” VS “标准模型”

20世纪初,物理学已经发展到了非常完美的程度。但是,经典物理大厦上空飘浮的两朵小小的乌云,却最终发展成为一场推倒大厦的风暴,并促成了相对论和量子力学的建立。 2022-04-10

KATRIN实验以高精度测量中微子质量

中微子可以说是宇宙中最吸引人的基础粒子。 2022-02-18

阅读排行榜
台南县| 宜春市| 攀枝花市| 峡江县| 焦作市| 安宁市| 五河县| 绥滨县| 尼木县| 新巴尔虎左旗|